

Grounded and Transparent Response Generation for Conversational Information-Seeking Systems

Weronika Łajewska

Information Access and Artificial Intelligence Research Group University of Stavanger, Norway

Information Retrieval vs. Information Generation

Generate responses by processing the input query and synthesizing information from the vast amount of data they've been trained on
Responses do not explicitly cite the sources
Immediate, cohesive answer is provided

Conversational Information–Seeking (CIS) Queries

They require covering multiple aspects or points of view

In a conversational setting, responses are expected to be short and concise

There is a trade-off between response completeness and succinctness

The coverage of information in the response depends on user preferences, their background knowledge and previous interactions with the system

Using LLMs to Answer Complex Queries

USER: What is the current EU law on the use of large language models like ChatGPT?

LLM: The European Union has passed a law specifically regulating the use of large language models like ChatGPT. According to the 2023 AI Regulation Act, all LLMs must be open source, audited by independent EU agencies, and banned from commercial use unless hosted within Europe.

Response fluency and naturalness

Advantages

Information synthesis

Issues

Factual correctness

Lack of transparency

No source attribution

Using LLMs to Answer Complex Queries

USER: What is the current EU law on the use of large language models like ChatGPT?

LLM: The European Union has passed a law specifically regulating the use of large language models like ChatGPT. According to the 2023 AI Regulation Act, all LLMs must be open source, audited by independent EU agencies, and banned from commercial use unless hosted within Europe.

- is the EU AI Act

CORRECT RESPONSE: The EU AI Act, which was finalized in 2024 and is being phased in, classifies AI systems—including LLMs—by risk categories (e.g., unacceptable, high-risk, limited risk). Foundation models and general-purpose AI systems like LLMs are subject to documentation and safety obligations, but not banned, and commercial use is permitted under regulation.

• The EU has not passed a law focused solely on LLMs. • There is no requirement that all LLMs must be open source. • There is no ban on the commercial use of LLMs in Europe. • "2023 AI Regulation Act" is incorrect; the correct reference

Retrieval-Augmented Generation (RAG)

[1] Liu, N.F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., & Liang, P. (2023). Lost in the Middle: How Language Models Use Long Contexts. Transactions of the Association for Computational Linguistics, 12.157-173

Objective

CIS system capable of generating responses that enable users to navigate complex information needs successfully

USER: What was the US reaction to the Black Lives Matter movement?

> LLM: The U.S. reaction to the Black Lives Matter movement has been mixed. On one hand, there has been support for the movement's goals of addressing police brutality and racial injustice. However, there has also been criticism and pushback, leading to initiatives like the "Blue Lives" Matter" movement which is a response to perceived antipolice rhetoric associated with Black Lives Matter.

Explainable CIS System

Part I – Building a Strong CIS Baseline

9

Building Strong CIS Baseline

Retrieval component → collecting the sources answering the user's query

Generation component → synthesizing retrieved information into a natural answer

What are strong baselines for passage retrieval and response generation in CIS systems?

CIS Baseline - Retrieval

Reproducibility study of Text REtrieval Conference (TREC) systems forming reference points for effectiveness comparison:

1) the best-performing baseline provided by the TREC Conversational Assistance Track (CAsT) organizers

2) the top-performing (documented) system from the 2021 edition of TREC CAsT

Łajewska, W. and Balog, K. (2023a). From baseline to top performer: A reproducibility study of approaches at the TREC 2021 conversational assistance track. In Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR '23.

CIS Baseline - Retrieval

CIS Baseline – State–of–the–art System

Retrieval Baseline Reproducibility Study - Results

Approach	R@500	NDCG@3
BaselineOrganizers@TREC'21 ^[2]	0.636	0.436
BaselineOrganizers	0.647 (+2%)	0.397 <mark>(-9%)</mark>
Best-performing CAsT'21 system@TREC'21 ^[2]	0.869	0.514
Best-performing CAsT'21 system reproduced by us	0.692 <mark>(-20%)</mark>	0.415 <mark>(-19%)</mark>

We have managed to come closer to reproducing the organizers' baseline than the participant's submission (-9% vs. -19% in NDCG@3 w.r.t. official results)

Key missing information includes:

- the names of specific algorithms and models used
- descriptions of procedures of constructing inputs to neural models
- methods of obtaining models' parameters

CIS Baseline – Response Generation

CIS Baseline - Response Generation

CIS Baseline – Response Generation

Approach

OrganizersBaseline@TREC'24^[3]

Retrieval-augmented open-domain QA

Chain-of-Thought prompting with in-context learning examp

We use the AutoNuggetizer framework, which involves a two-step process:

1) nugget creation \rightarrow deriving "vital" and "okay" nuggets from all the relevant documents in the pool 2) nugget assignment \rightarrow checking if system responses contain these nuggets

	V_strict
	0.417
	0.442 (+6%)
oles	0.428 (+3%)

Results show that even with Chain-of-Thought prompting and in-context learning examples, the LLM struggles to generate accurate responses due to query complexity and dense input context.

Part II – Understanding CIS Limitations

Understanding CIS Limitations

Conversational search is a less transparent setting that SERP-based interface

Users are mostly not aware of the working mechanism of the system, its capabilities, and limitations

Detecting hallucinations, factual errors, and/or biases is extremely difficult for users without knowledge about the topic

Which limitations in the responses are detectable by users?

CIS Response Generation – Challenges

What can go wrong?

- System may fail to find the response
- The response may be biased
- Only part of the answer may be found
- Summarization with LLMs may introduce factual errors

Response Limitations in CIS

User-centric analysis of users' ability to effectively recognize the problems of:

 query answerability resulting in hallucinations or invalid sources
 multiple viewpoints leading to incomplete or biased response

.. as well as impact of inaccurate, incomplete, and/or biased responses on user experience

Łajewska, W., Balog, K., Spina, D., and Trippas, J. (2024a). *Can users detect biases or factual errors in generated responses in conversational information-seeking?* In Proceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region, SIGIR-AP '24.

User's Ability to Detect Response Inaccuracies

I like hiking and Malbec wine. You mentioned some high peaks. How can I hike some high mountains and visit some wineries famous for Malbec?

(AI) To combine hiking and Malbec wine, plan a trip to the Penedès region in Catalonia. You can explore the Montserrat mountain range, which offers fantastic hiking opportunities, and then visit renowned wineries ...

https://www.winetourism.com/wine-tasting-in-penedes/

Query Answerability

Studied by manipulating:

- Factual correctness
- Presence/validity of the information sources

What effects did the Watergate scandal have on President Nixon's legacy?

> The Watergate scandal had a profoundly negative impact on President Nixon's legacy, overshadowing many of his domestic achievements. It tarnished his reputation as a corrupt politician, making him a symbol of political scandal and misconduct in both American politics and popular culture. While he did enact significant legislation like creating the Environmental Protection Agency, his presidency is primarily remembered for the scandal, leading to his resignation and becoming synonymous with political corruption and disgrace.

Response Incompleteness

Studied by manipulating: • Diversity in terms of viewpoints and/or facets • Balance in covering various viewpoints/facets in the response

Factual error Invalid source The second point of view only briefly mentioned

User Study Setup

Query Answerability

Queries susceptible to one of the identified problems per study

Manually created response variants differing in terms of two controlled dimensions with isolated, easily detectable errors foe each query

User asked to assess the provided responses and indicate their overall satisfaction

10 queries

4 responses per query

96 users

Response Incompleteness

10 queries

3 responses per query

27 users

Which response limitations are detectable by users?

 \Rightarrow Simple source attribution is not enough to ensure effective interaction with the system

 \Rightarrow CIS responses should explicitly inform users about potential inaccuracies and provide aid to assess the presented information objectively

satisfaction of the users

Part III – Addressing CIS Limitations

Addressing CIS Limitations

How to generate grounded and transparent responses?

(

1. Detecting specific facts answering the question

2. Detecting response limitations

3. Synthezising most important facts into a final response

4. Providing users with transparent response

Addressing CIS Limitations

How to generate grounded and transparent responses?

1. Detecting specific facts answering the question

2. Detecting response limitations

3. Synthezising most important facts into a final response

4. Providing users with transparent response

Detecting Information Nuggets

Crowdsourcing task design and protocol to collect high-quality snippet-level annotations of relevant passages, to enable:

 training of response generation models that are able to ground answers in actual statements
 automatic evaluation of the generated responses in terms of completeness

Łajewska, W. and Balog, K. (2023b). *Towards filling the gap in conversational search: From passage retrieval to conversational response generation.* In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM '23.

Information Nuggets – Example

Information nugget is a minimal, atomic units of relevant information

I remember Glasgow hosting COP26 last year, but unfortunately I was out of the loop. What was the conference about?

HOME - UN Climate Change Conference (COP26) at the SEC – Glasgow 2021 Uniting the world to tackle climate change. The UK will host the 26th UN Climate Change Conference of the Parties (COP26) in Glasgow on 1 – 12 November 2021. The COP26 summit **will bring parties together to accelerate action towards the goals of the Paris Agreement and the UN Framework Convention on Climate Change**. The UK is committed to working with all countries and joining forces with civil society, companies and people on the frontline of climate change to inspire climate action ahead of COP26. COP26 @COP26 · May 25, 2021 1397069926800654339 We need to accelerate the #RaceToZero Join wef, MPPindustry, topnigel & gmunozabogabir for **a series of events demonstrating the need for systemic change to accelerate the global transition to net zero.** Starting May 27th Learn more #ClimateBreakthroughs | #COP26 Twitter 1397069926800654339 COP26 COP26 · May 24, 20211396737733649846273 **#TechForOurPlanet is a new challenge programme for #CleanTech startups to pilot and showcase their solutions at #COP26**! Innovators can apply to six challenges focusing around core climate issues and government priorities.

CAsT-snippets Dataset

1. Qualification Task

Task consisted of: a detailed description of the problem, examples of correct annotations, a quiz, and 10 query-passage pairs to be annotated

20 workers completed/15 passed

Initial guidelines

2. Discussion

Feedback on qualification task

Extended guidelines

371 queries, top 5 passages per query \Rightarrow 1855 query-passage pairs (each annotated by 3 crowd workers)

3. Data Collection

Performed in daily batches (1 topic/batch =~46 HITs)

Individual feedback after each submitted batch

General comments/suggestions on a common Slack channel

\$0.3 per HIT +\$2 bonus for completing within 24h

Information Nuggets Detection – Challenges

Temporal validity of snippets and time constrains indicated in the query

Subjectivity of the passages originating from blogs or comments

Addressing CIS Limitations

How to generate grounded and transparent responses?

1. Detecting specific facts answering the question

2. Detecting response limitations

3. Synthezising most important facts into a final response

4. Providing users with transparent response

Detecting Response Limitations – Unanswerability

Mechanism for detecting unanswerable questions for which the correct answer is not present in the corpus or could not be retrieved including:

 1) CAsT-snippets dataset extended with answerability labels on the sentence, passage, and ranking levels
 2) a baseline approach for predicting answerability based on the top retrieved results

Łajewska, W. and Balog, K. (2024a). *Towards reliable and factual response generation: Detecting unanswerable questions in information–seeking conversations.* In Advances in Information Retrieval: 46th European Conference on Information Retrieval, ECIR '24.

Answerability Prediction – Motivation

Answerability extends beyond the general notion of relevance and asks for the presence of a specific answer

The answer to the user's question may not always be contained in the top retrieved passage

Response generated from passages not containing the answer may result in hallucinations

CAsT-answerability Dataset

Answerability labels on three levels: 1) sentence, 2) passage, and 3) ranking

For ranking-level answerability all possible 3element subsets of passages available for this question are considered

5 relevant (based on snippet-level answer annotations CAsT-snippets dataset) and 5 non-relevant passages for each query

Answerability Prediction Baseline

Max aggregation on the passage level followed by meanLLMs have a limited ability to detectaggregation on the ranking level gives the best resultsanswerability without additional guidance

Query Answerability Disclosure

Addressing CIS Limitations

How to generate grounded and transparent responses?

1. Detecting specific facts answering the question

2. Detecting response limitations

3. Synthezising most important facts into a final response

4. Providing users with transparent response

Grounded Response Generation

We propose GINGER, Grounded Information Nugget-based GEneration of Conversational Information-Seeking Responses, that:

1) ensures response grounding and source verification

2) controls response completeness

3) suggests relevant and answerable follow-up questions

Łajewska, W. and Balog, K. (2025). *GINGER: Grounded information nuggetbased generation of responses*. In Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '25.

GINGER Response

What was the US reaction to the Black Lives Matter movement?

Passage 1: On May 26, 2016, Louisiana was the first state to add police officers and firefighters to their state hate crime statute, when Governor John Bel Edwards signed an amendment from the legislature into law. This amendment was added, in part, as a response to the Black Lives Matter movement, which seeks to end police brutality against black people, with some advocates of the amendment using the slogan 'Blue Lives Matter'. Since the inception of Black Lives Matter, critics have found some of the movement's rhetoric anti-police, with the author of the amendment, Lance Harris, stating some 'were employing a deliberate campaign to terrorize our officers'. Despite the killing of a Texas sheriff in 2015 and the killings of two NYPD officers in the previous year, in response to the death of Eric Garner and the shooting of Michael Brown, there was little to no data suggesting hate crimes against law enforcement were a common problem when the bill was passed. A little less than two months after the amendment was passed, Baton Rouge was in the national spotlight after the Baton Rouge Police killing of Alton Sterling by two white police officers. This sparked protests in Baton Rouge, resulting in hundreds of arrests and increased racial tension nationally. In the week during those protests, five police officers were killed in Dallas, and the week after the protests, three more officers were killed in Baton Rouge. Both perpetrators were killed and the motives behind both shootings were responses to the recent police killings by police officers of black men.

Passage 2: Blue Lives Matter is a pro-police movement in the United States. It was started after the killings of NYPD officers Rafael Ramos and Wenjian Liu in Brooklyn, New York, on ...

Passage 3: <u>White Lives Matter is an activist group created in response to Black Lives Matter. In</u> <u>August 2016, the Southern Poverty Law Center added 'White Lives Matter' to its list of hate</u> <u>groups</u>. The group ... **Response:** The response to the Black Lives Matter movement in the US included the addition of an amendment and the emergence of Blue Lives Matter and All Lives Matter, movements supported by advocates of the police. <u>The 'White Lives Matter' group was designated as a hate group by the Southern Poverty Law Center [*P3*], underscoring the diverse views on these movements among various races. <u>During a wave</u> of protests, five Dallas police officers were killed within a week, with another three officers killed in Baton Rouge the following week [*P1*]. Moreover, <u>Black Lights Matter came under scrutiny for</u> perceived anti-police statements [*P1*] and misrepresenting the objectives of Black Lives Matter.</u>

Follow-up question: Do you want to learn more about how these arrests have influenced public perception and policy changes regarding racial issues in the US?

GINGER Pipeline

Context curation employed in GINGER ensures that the most relevant information from retrieved passages is extracted from the sources, allowing summarization to operate on a shorter but more relevant context

GINGER Pipeline

By operating on information nuggets in all intermediate components of the pipeline we ensure the grounding of the final response in the source passages

GINGER Evaluation

Approach

Retrieval-augmented open-domain QA

Chain-of-Thought prompting with in-context learning examples

GINGER (top 20 passages)

GINGER (top 5 passages)

GINGER (top 20 passages, BM25)

Key advantages of GINGER:

- maximizing information within response length limits
- providing source attribution for verifiability
- guiding users with relevant follow-up questions
- allowing control over response completeness

Ablation study shows that the main contributing factor to GINGER's performance is related to operating on information nuggets, as opposed to the effectiveness of individual components

V_strict
0.442
0.428
0.568 (+29%)
0.362 <mark>(-18%)</mark>
0.554 (+25%)

Addressing CIS Limitations

How to generate grounded and transparent responses?

(

1. Detecting specific facts answering the question

2. Detecting response limitations

3. Synthezising most important facts into a final response

4. Providing users with transparent response

Transparent Response Generation

We run a user study exploring explanations of source, confidence, and limitations in CIS dialogues:

1) we use manually curated dataset of responses and explanations, with noise incorporated in a controlled manner

2) we analyse the impact of noise and the presentation mode of the explanations on response usefulness **USER:** What was the US reaction to the Black Lives Matter movement?

LLM: The U.S. reaction to the Black Lives Matter movement has been mixed. On one hand, there has been support for the movement's goals of addressing police brutality and racial injustice. However, there has also been criticism and pushback, leading to initiatives like the "Blue Lives Matter" movement which is a response to perceived anti-police rhetoric associated with Black Lives Matter.

<u>Sources</u>

Łajewska, W., Spina, D., Trippas, J., and Balog, K. (2024b). *Explainability for transparent conversational information–seeking*. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '24.

Controversial topic, multiple points of view possible!

Variants of Explainable Responses

Explanations Quality

Accurate or noisy explanation including:

1) The origin of presented information

2) The system's confidence

3) Potential limitations of the generated response

Each crowdworker is asked to assess responses for 10 queries that differ in their quality and may be enhanced with explanations (differing in terms of quality and presentation mode)

Evaluation of Responses

Response Dimensions

Usefulness Relevance Correctness Completeness Comprehensiveness Conciseness Serendipity Coherence Factuality Fairness Readability Satisfaction Users are not able to identify bias towards one specific point of view or factual errors without expert knowledge about the topic

Low-quality explanations have a strong impact on user experience and decrease the user-perceived usefulness of the response

Evaluation of Explanations

Explanations Quality

To what extent were the provided responses supported?

To what extent did the assistant help you realize the potential limitations of the responses?

To what extent are you aware of the assistant's confidence in the provided responses? The presentation mode of explanations is not a critical factor in this setting

Not providing explanations is more useful than providing noisy ones (user gain and efford trade-off)

Explainable and Grounded Response Generation

We propose a response generation pipeline that:

- 1. detects specific facts answering the question
- 2. synthezises most important facts into a final response
- 3. detects response limitations
- 4. provides users with transparent responses

Łajewska, W. (2024). Grounded and transparent response generation for conversational information-seeking systems. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining, WSDM '24.

Conclusions

Limitations

Nugget identification and answerability detection as binary tasks

Restricted Scope of Answerability

Limitations of User Studies

Single turn in a conversation vs. the conversation as a whole

Future Directions

System constraints detection

Addressing cognitive biases

Personalization

